
Project CARS 2 - Dedicated Server Scripting Guide
This document describes the scripting capabilities of the dedicated server. For most server
administrators, the server configuration and supplied Lua addons described in Dedicated Server
User Guide should be sufficient. If further customization or stat tracking are needed, the server
offers two APIs - HTTP-based access and Lua-based scripting:

● HTTP API. You can query the server status and send requests to the server using a
simple HTTP-based protocol. This API is mostly useful when you want to monitor the
server or show the current server’s status on your website. The HTTP API is disabled in
the default sample config.

● Lua API. The server embeds Lua 5.3 and provides a scripting API which can be used to
both monitor and control the server. This API is more useful for controlling the server in a
predefined manner, such as automatically rotating tracks. The server ships with several
sample addons and the Lua API is enabled by in the default sample config.

Project CARS 2 - Dedicated Server Scripting Guide
Functionality available to the APIs
Server control modes
Server Attributes

Extended Session Attributes
Server Events

HTTP API

Lua API
Lua API - Server Configuration
Lua Addon Structure

Addon Metafile
Default Addon Configuration
Addon Loading
Special Core Addon: sms_base

Data Type Conversions
Session Attributes
JSON

Server Lists Exposed to Lua
Track List
Vehicle List
Vehicle Class List
Server Attribute List

Events List
Enums Lists
Flags Lists
Callback List

Tables with Server and Session Status
Server Status
Session Status and Attributes

Session Attributes
Session Members
Session Participants

Server Lua Library
Sandboxing
Lua Library Extensions

dump(table [, indent])
dump_typed(table [, indent])
string:split(pattern [, results])
table.shallow_copy(other_table)
table.deep_copy(other_table)
table.deep_copy_normalized(other_table [, intkey_table_names [, this_table_name]
])
table.list_to_set(list)
table.add(table, key, delta)
table.subtract(table, key, delta)

Server Builtins
GetBuildVersion()
GetProtocolVersion()
GetApiVersion()
GetAddonVersion()
RegisterCallback(function)
UnregisterCallback()
EnableCallback(callback_id)
DisableCallback(callback_id)
SavePersistentData()
GetUtcUnixTime()
GetServerUptimeMs()
SendChatToAll(message)
SendChatToMember(refid, message)
KickMember(refid [, ban_seconds])
StopSession()

SetSessionAttributes(attributes)
SetNextSessionAttributes(attributes)
SetSessionAndNextAttributes(attributes)
GetEventLogInfo()
GetEventLogRange(offset [, count])

Attribute Normalization and Stringification
Normalization
Stringification
Track and Vehicle Names

Addon Callbacks
Tick
ServerStateChanged
SessionManagerStateChanged
SessionAttributesChanged
NextSessionAttributesChanged
MemberJoined
MemberStateChanged
MemberAttributesChanged
HostMigrated
MemberLeft
ParticipantCreated
PariticipantAttributesChanged
ParticipantRemoved
EventLogged

Functionality available to the APIs
Before the description of the two APIs, few notes about how the server itself operates. The
Project CARS 2 dedicated server is more of a “coordinator” kind of server, the core of the
simulation is still running on the individual peers. The gameplay network traffic is sent through
the server, which eliminates many issues with peer to peer networking having to punch through
user routers and NATs. But the server does not participate in the actual physics simulation. That
means that even with the open scriptable architecture, you can’t control the actual simulation
and gameplay from the server in any other means that those exposed by the game to the
server.

What the server does and what can be extended with scripting is:

● Session management - players joining the server and setting up a session on it. In the
API you can monitor players joining/leaving and kick players, with an optional temporary

ban. In the future it will be also possible to access and modify the persistent blacklist and
whitelist from the scripts.

● Session, player and participant setup and status. The server receives information about
the setup and the state of the active race, and individual players (called session
members in the API) and participants (vehicles). The setup and status are available to
the API via queries and notifications.

● Modify the game’s setup. In a peer to peer session with no server, the “host” player can
control the game’s setup - first when creating a new multiplayer session, then in the
lobby. The server can optionally take over this responsibility, and the setup control is
then also exposed to the APIs.

Server control modes
The server can be configured to run in different “control modes”.

The main setting is available in the server configuration file (server.cfg) as “controlGameSetup”
and it defaults to false in the sample config. This means that multiplayer sessions hosted on the
server work in a very similar way to peer to peer sessions, the first player that joins the server
becomes the “host” and can control the setup in the lobby UI. In this mode the API calls that
control the setup of the active multiplayer session will silently fail. The scripts will still be able to
configure the default setup that’s used when the first player joins an empty server, but the player
will always be able to change the settings to anything else.

If the “controlGameSetup” configuration option is set to true, the server will take over the game’s
setup control. While the game will still have a player host, the player will not be able to modify
the game’s setup from the lobby anymore. The setup can then be controlled on the server:

● In the server’s configuration file, “sessionAttributes” specifies the initial setup.
● HTTP API and Lua API hooks can be used to change the “next session” setup and the

“current session” setup. The “next session” setup can be changed at any time, and will
apply when the first player joins an empty server, or when the current race finishes and
players return back to the lobby. The “current session” setup can be changed only while
the players are in that lobby, and will change that lobby’s setup directly.

● The sample Lua addon “sms_rotate” uses the Lua API to automatically rotate setups
applied by the server. Even if fixed setup is used, it’s recommended to use the addon
over the “sessionAttributes” configuration option, because the addon allows for more
user-friendly attribute values. Where the config accepts only integral id values, the Lua
addon can also parse string names and converts them to ids automatically - so for
example you can set the “TrackId” attribute by the track’s name, instead of the numeric
id.

● The “sms_rotate” Lua addon uses a helper Lua library “lib_rotate”, which simplifies
enforcing track/vehicle/class, and has helper functions for combining multiple setups into
on. This library can be used by any other community-developed addon.

Once a server is running in “controls game’s setup” mode, it can enforce even more than that.
The additional control options are controlled by these session attributes:

● “ServerControlsTrack”: If set to 0, the host player will be able to change the track, and
other players can vote to request a change from the host. If set to 1, the players won’t be
able to change the track and it will be controlled only by the server’s “TrackId” attribute.

● “ServerControlsVehicleClass”: Even though the host player can’t change the class
directly in the lobby setup when the setup is controlled by the server, it’s still possible to
navigate to the garage and select a car from another class. When this attribute is set to
1, this will no longer be possible - while the garage UI will still be enabled, any attempts
to change to car from different class will fail. When setting this attribute to 1, it should
always be combined with the session flag FORCE_SAME_VEHICLE_CLASS and the
correct class id set in the “VehicleClassId” session attribute, or with
FORCE_MULTI_VEHICLE_CLASS session flag, and the correct values in
“VehicleClassId”, “MultiClassSlots” and “MultiClassSlot[1-3]” session attributes.

● ServerControlsVehicle: Similar to the vehicle class control, but completely disables the
vehicle selection UI of all players. It should always be combined with the session flag
FOCE_IDENTICAL_VEHICLES and the correct vehicle id set in the “VehicleModelId”
session attribute.

Server Attributes
The above section already mentioned “session attributes”. The server attributes store the setup
and state of the game on the server. There are three kinds of attributes:

● Session attributes: The setup and state of the multiplayer session. Because each server
can host only one multiplayer session, these attributes do not need any additional
identification other than their name. Most of the “setup”-style session attributes can be
modified through the APIs when the server is running in “controls game’s setup” mode.

● Member attributes (or player attributes): The setup and state of individual session
members, or players. These attributes are all read-only in the current version of the
server. Each session member is identified by their “reference id”, or “refid”. This is a
relatively random 16-bit integer, that changes if the same player leaves and rejoins the
session later.

● Participant attributes: State of each participant. Since this is a racing game, each
participant corresponds to one vehicle in the race. Participants can be controlled by
players, or they can be AI vehicles. Participants are identified by their ids, which are
32-bit integers - since the ids start at 1 and increment by one for each new participant
created, you will rarely see large numbers here, but in theory they still require 32-bit data
type for storage.

Attributes can be of only two types:

● Integral attributes, with data sizes of 1, 2 or 4 bytes. All attribute integers are signed.
Boolean attributes are represented as 1-byte integers, with zero meaning false, and

non-zero meaning true ; the server itself will always use 1 for true, but do not rely on
that.

● String attributes. All strings on the server use UTF-8 encoding. In most cases the server
does not modify or interpret any strings, so they are treated as arrays of bytes. In some
track or vehicle names you will encounter non-ASCII characters, so it’s still important to
interpret the strings as UTF-8 where necessary. As a side note, all files written and read
by the server are also expected to be encoded in UTF-8.

See the Dedicated Server Values and Types document for the full list of attributes.

Extended Session Attributes
The attributes contain various identifiers such as track id, vehicle class id or vehicle model id.
Those are stored as 32-bit signed integers in the attribute tables. Also enumeration types such
as “weather” are represented by integer values. The values are all available in the Values and
Types document.

The Lua API adds several helper functions that allow you to use the corresponding names in
place of the integers. So for example, the TrackId attribute can be set to integer ​1988984740
meaning “Brands Hatch Indy”. In many contexts in Lua, the attribute can actually be set to string
“Brands Hatch Indy” and the code will automatically convert the value to the integral id. In the
context of session attributes these automatic conversions apply to:

● TrackId
● VehicleClassId
● VehicleModelId
● Flags
● All “enum” attributes

Id and enum conversion is straightforward - instead of the numeric identifier/value, the name
string can be used. Flags can combine multiple flag names into one integer, the string
representation is then the value names concatenated by commas. For example, this is a valid
string-form value of the Flags attribute:

FILL_SESSION_WITH_AI,ABS_ALLOWED,SC_ALLOWED,TCS_ALLOWED

No spaces are allowed in the string Flags format. Numbers are still allowed and can be
combined with string flag values.

The “sms_base” Lua addon that’s always loaded will overload the following Lua API builtins:
SetSessionAttributes​, ​SetNextSessionAttributes​ and ​SetSessionAndNextAttributes​. These
overridden builtins can access ids, enums and flags in string forms. It also defines several
functions which help with the “normalization” (converting string values to numeric values) and
“stringification” (converting numbers to strings), as documented in ​Attribute Normalization and
Stringification​.

Server Events
Another way of communicating the server’s and game’s state from on the server are “events”.
While attributes are used to read and modify the current state, the events are stored in a log and
can be examined later.

Similar to attributes, events come in three kinds: session events, session member events, and
participant events. Each event is identified by its kind, name, and attributes specific to that
event. Session member events include the member’s refid, participant events include the
participant id and the refid of the member owning the participant.

See the Dedicated Server Values and Types document for the full list of all events.

HTTP API
Please refer to the official API forum thread at
http://forum.projectcarsgame.com/showthread.php?26520-Dedicated-Server-API​, that should
contain all necessary information about the API.

Lua API
The dedicated server includes support for scripting the server in Lua. Lua is a popular scripting
language used in many games, so it should not be hard to find enough documentation and help
with the language itself on the Internet. To be a bit more specific, the server uses Lua version
5.3. It’s compiled with all standard Lua library functions enabled, integer types are 64-bit and
floating-point numbers are doubles (also 64-bit). Few links to start with:

● Main Lua web page: ​http://www.lua.org/
● Lua 5.3 readme - changes compared to version 5.2:

http://www.lua.org/manual/5.3/readme.html#changes
● Lua 5.3 reference manual - ​http://www.lua.org/manual/5.3/

Please be aware that most information found on the Internet might be about Lua 5.1 or Lua 5.2.
There are few significant changes in Lua 5.3, mostly the addition of integers, and few
incompatibilities when compared to older versions. These are described in ​Section 8 of the Lua
5.3 reference manual​.

Lua API - Server Configuration
To enable the Lua API, set the server configuration option “enableLuaApi” to true. This is the
default value in the sample config. The server will load all addons specified in array
“luaApiAddons” on startup, as well as any of their dependencies. The default server config file

http://forum.projectcarsgame.com/showthread.php?26520-Dedicated-Server-API
http://www.lua.org/
http://www.lua.org/manual/5.3/readme.html#changes
http://www.lua.org/manual/5.3/
http://www.lua.org/manual/5.3/manual.html#8
http://www.lua.org/manual/5.3/manual.html#8

enables several sample addons that ship with the server. More information about these addons
can be found in Dedicated Server User Guide, in section Server Addons. If you change the list
of addons to load or want to reload an addon after updating it, the server needs to be restarted.

The config can be also used to control the location of several directories related to Lua addons:

● “luaAddonRoot”: The root directory from which the addons are loaded. It defaults to “lua”,
which is relative to the current directory when starting the server. This will work when
running the server executable directly from its directory when the directory structure is
preserved after downloading the server from Steam. But you might have to customize it
if running the server from another directory.

● “luaConfigRoot”: The directory where the server stores Lua addon configuration files and
persistent data files. Defaults to “lua_config”.

● “luaOutputRoot”: Currently not used.

Lua Addon Structure
All Lua scripts are separated into “addons”. Each addon consist of a metafile with basic
information about the addon, default addon configuration, and the addon’s Lua scripts. When
the server starts, it loads addons specified in the configuration’s “luaApiAddons” list, and all
addons required by the addons in the list as their dependencies.

The addons shipped with the server are all located in the “lua” subdirectory below the
executable, and it’s recommended to just copy any custom addons into the same directory.

The recommended naming conventions for the Lua addons are:

● sms_ADDON: Addon developed by SMS and shipped with the server.
● lib_ADDON: Library addon that does not do anything on its own, but provides useful

functionality that can be used by other addons
● xxx_ADDON: It’s recommended to use similar naming conventions for addons

developed by community members. Use a short prefix based on the developer’s name or
nickname followed by the addon name.

Addon Metafile
Each addon must include addon metafile stored in file
<lua_root>/<addon_name>/<addon_name>.json​, where ​<lua_root>​ is specified in the
server config’s “luaAddonRoot”, and ​<addon_name>​ is the addon’s name. The syntax of the file
is the same extended JSON syntax as that of the the server configuration file. The contents of
the metafile are:

● “version”: List with the major and minor version number of the addon. The server only
remembers the version, it’s not used for anything specific. It can be queried from the Lua
addon script by builtin ​GetAddonVersion()​. Example ​“version​ ​: [1, 0]​”

● “description”: Short description text. This is only stored but not used by the server.

● “apiVersion”: List with the major and minor version of the The Lua API required by the
addon. If this version number is not compatible with the API version provided by the
server, the addon will not be loaded. The current API version is 3.1 (written as
“​[3, 1]​” list in the metafile). The compatibility checks as follows:

○ The major version needs to match exactly. The current major version is 3, and it’s
increased when a compatibility-breaking change is introduced to the API.

○ The requested major version must be equal to or greater than the current API
version. The current minor version is 1, and it’s increased when a new feature is
added to the API, but the API remains backwards compatible.

So for example, addon requesting API version 3.1 would load on server providing API
3.1 and API 3.2, but would not load on server providing API 2.x, 3.0 or 4.x.

● “depends”: List of addon names this addon requires for its functionality. Leave this empty
if the addon has no dependencies. All addons implicitly depend on “sms_base”.

● “files”: The list of Lua files to be loaded, relative to the addon’s root directory.

Default Addon Configuration
In addition to the metafile, each addon needs to include default configuration file in
<lua_root>/<addon_name>/<addon_name>_default_config.json​. This file also needs to
use the usual extended JSON syntax and contain exactly two entries:

● “version”: The configuration file’s version. Start at 1 for any new addon.
● “config”: A JSON object with the default configuration. This will be available to the addon

as a Lua table.

When the server loads an addon for the first time, the default configuration will be automatically
copied over into ​<lua_config>/<addon_name>_config.json​, which can be then customized
by the addon’s user. This is the file which the server loads, and the passes to all addon’s scripts
(see ​Addon Loading​ below).

If the “version” of the default config is increased, the server will notice that it’s not equal to the
customized user’s addon. In this case, it will print an information message, backup the
customized config (using its version number in the name), and copy over the new default config
file. Increase the version whenever the addon’s configuration changes in a significant
incompatible way. But try to avoid doing this too often, because it forces users to edit the
configuration again.

Addon Loading
All Lua addons are loaded at server’s startup, in order specified by the “luaApiAddons” list from
the server configuration. For each addon in the list the server goes through these steps:

1. Load and parse the addon’s metafile, fail loading the addon if the metafile is not present
or can’t be parsed.

2. Check the “apiVersion” required by the metafile, and fail loading the addon if it does not
match the server’s Lua API version.

3. Load the addon’s default configuration file and parse its “version”. Fail loading the addon
if there are any problems with the file.

4. Check if custom configuration file for the file exists
a. If yes, parse it and check if its version matches the default configuration file

version. If yes, remember the custom config, otherwise backup the custom file
and continue to b.

b. If no (or if there was a version mismatch), copy the default configuration file to the
custom file’s location, and remember the default config.

5. Check if persistent addon data file file exists and load it if it does.
6. Go through all “depends” of the addon, and if any of those addons have not been loaded

yet, load them first. Fail loading of this addon if any of the depends fail to load. Also fail
loading the addon if a circular dependency is detected.

7. Now finally load the addon scripts from “files”.

The script files themselves are loaded in the order as specified by the “files” option, and each is
ran individually. The server passes the “addon storage” table to the addon as the only argument
through the … parameter. The addon storage is a table created for the addon, with two items
stored in it by the server:

● “config”: A table stored at the config key contains the configuration table remembered in
step 4. So if the user never customized the config, this will be the default addon config
JSON converted to Lua table following the rules described in ​Data Type Conversions​,
otherwise it will be the customized config. Because the structure of the config can be
modified by users the addon code should always check its content for validity, in case
the user removed something by mistake or used a wrong data type somewhere, and fix it
if possible or at least print a user-friendly warning message.

● “data”: Addon’s persistent data loaded from ​<lua_config>/<addon_name>_data.json​.
If the addon needs to store any data that persists through server restart, it should store
them into this table, and then call builtin ​SavePersistentData()​.

The addon is free to use any other keys in the storage table for whatever it wants, there are
currently no plans to reserve any other keys for the server’s use.

Example 1: Access addon configuration

local addon_storage = …

local addon_config = addon_storage.config

-- Now read the config from the addon_config table

Example 2: Access persistent addon data

local addon_storage = …

local addon_data = addon_storage.data

-- Store anything in addon_data as the addon runs

-- And then tell the server to save the data

SavePersistentData()

Also see ​Data Type Conversions - JSON​ for some additional information about storing complex
nested types in the addon persistent data table.

Special Core Addon: sms_base
While loading dependencies of an addon, the special addon “sms_base” is always checked as
the first dependency. Therefore this addon is always loaded first, no matter what. The addon
defines various helper functions and data, and it is considered the integral part of the server’s
Lua API. Any data structures it adds are listed in ​Server Lists Exposed to Lua​, and any functions
it defines are included in ​Server Lua Library​. You can also have a look at its source to see what
exactly defines and how.

Data Type Conversions
All Lua data types will be converted to and from internal server’s data types by the API at
several points. These are:

Session Attributes
Session attributes, session member attributes and participant attributes are used to store the
setup and status of the session, players and cars. The attributes are identified by names, which
translate to strings in Lua. Their values can be only integers or strings, no other data types are
allowed. These translate to and from Lua directly. Be aware that “true/false” kinds of attributes
are represented as “1/0” integers, and that in Lua the number zero evaluates to true in boolean
context. This can be a source of unexpected errors, so be extra careful when checking the
values of those attributes. Always write code like:

if session.attributes.ServerControlsSetup ~= 0 then … end

and never as
if session.attributes.ServerCotnrolsSetup then … end

JSON
The server stores configuration files and persistent addon data as JSON. Conversions between
JSON and Lua data types can be a bit tricky in some cases. The scalar conversion rules are
quite simple:

● Lua strings are converted to/from JSON strings.
● Lua boolean values are converted to/from JSON “true” and “false” identifiers.
● Lua integral or floating point numbers are converted to/from JSON’s numbers. Because

JSON does not specify the exact numeric data types and does not distinguish integers
and floating-point numbers, this conversion is a bit more complicated.

○ To JSON: The only numbers that are converted to JSON numbers directly are
integers that fit into 32 bits. Big integers and floating-point numbers are formatted

as strings into JSON, to prevent precision loss when reading them back in
various parsers.

○ From JSON: Quoted strings that contain only numbers remain strings after
conversion to Lua, the reader does not attempt to guess whether “1.23” should
be converted to a number, it never does that. Proper JSON numbers are
converted to 64-bit Lua integers or double-precision floating-point numbers
depending on their value.

This means that non-integral or large 64-bit integral values can change their Lua data
type after being saved in the persistent addon storage, they can become a string when
read back into the addon. Each addon is responsible for dealing with this potential issue
if it needs to store large/floating-point values in the persistent storage.

Even a bit more tricky than the number conversion are Lua tables. Tables are a weird and not
very sensible Lua container type that can be used as a map (hash table, associative array,
key-value list, whatever you want to call it), or as an array, or as both in a mixed way. On the
other hand, most sane languages and also the JSON data format clearly distinguish between
maps/objects and arrays/lists.

When converting a Lua table to JSON the server tries to automatically guess whether the table
represents an array or an object, if not given depending on the context ; for example a config
table is always converted to an object. The rules for generic table->JSON conversion are:

● Empty table is “object”
● Table with keys being only 1, 2, …, N with no gaps is “array”
● Anything else is “object”

This automatic guess should not cause any problems with data stored and then read back by a
Lua addon, for example when using the persistent storage. After reading the JSON back it will
end up a table again no matter what. But for JSON output that is then processed by external
tools, the automatic conversion of empty tables to objects might be something to look out for.

The bigger issue with table conversion is the fact that JSON objects allow only strings as keys,
while Lua can support pretty much any data types as keys. The conversion to JSON will always
try to convert all keys to strings, and fail if there are any keys in the table that can’t be converted
to strings. The conversion back to Lua table then does not try to do any guessing, and will leave
all keys as strings. The Lua addon code needs to be aware of this, and for example when
storing sparse array tables indexed by integers in the persistent storage, fix the data on startup
to contain the expected key types. Otherwise you risk the danger of ending up with mixed
strings and integers as the keys in the tables, which are different things in Lua (you can have
table with two keys “123” and 123).

The ​Server Lua Library​ extends the Lua “table” object with several useful functions, one of them
being ​table.deep_copy_normalized​. This can be used to create a copy of the persistent data
table structure in one call, automatically converting some sub-tables to use integral keys instead
of string keys. You can check the sources of the “sms_stats” addon for a sample usage.

Note that passing arguments and receiving results from Lua API builtins performs similar
conversions, because internal server’s data structures closely mirror the JSON restrictions ; to
be specific, arrays and maps are different container types, and maps can have only string keys.
This is usually not an issue in the API as the interface does not use tables in a manner that
could cause unexpected conversions anywhere.

Server Lists Exposed to Lua
Server attributes contain values of many different types. In many cases, enumeration-style
types use integral values or ids. The server defines global tables which list all available id,
enumeration and flags values. Those can be used to determine which id means which track,
what’s the value of the “force identical vehicles” flag and so on.

All builtin lists follow the same schema. They are all stored in the global table with a simple
name “lists”. Each list in the table is then another table with these contents:

● “description”: String describing the use of the list
● “list”: Table with the list itself. Each list is an array of structures. The format of the

structures is different for each list, but all lists contain at least the “name” field.

The addon “sms_base” defines several additional tables, extracting information from the
array-style builtin lists. These extra tables provide quick lookup from names to values or values
to names for the most useful data types.

Note that all these lists should be used as read-only, never write anything into them. Currently
the server does not protect them against unexpected writes, but modifying them will do no good
and will mostly likely break not yours but also any other running addons (the global namespace
and therefore the tables are shared between all addons).

The lists are also available in separate document Dedicated Server Values and Types.

Track List
The list of all known tracks is available in ​lists.tracks​, with ​lists.tracks.description
containing the description text, and the ​lists.tracks.list​ being the actual list. Each
structure in the list has these fields:

● “name”: The track’s name, as UTF-8 string.
● “id”: The track’s id, a 32-bit signed integer.

There are also helper global tables ​id_to_track​ and ​name_to_track​, allowing a simple
key-value lookup to tracks by either their id or name.

Vehicle List
The list of all known vehicles is available in ​lists.vehicles​. Each structure in the list has
these fields:

● “name”: The vehicle’s name, as UTF-8 string.
● “id”: The vehicle’s id, a 32-bit signed integer.
● “class”: The vehicle class, using its name (not the class’s id!)
● “liveries”: A table-array with the list of all vehicle’s liveries. Each element of the array is a

structure with “id” and “name” of the livery.

There are also helper global tables ​id_to_vehicle​ and ​name_to_vehicle​, allowing a simple
key-value lookup to vehicles by either their id or name.

Vehicle Class List
The list of all known vehicle classes is available in ​lists.vehicle_classes​. Each structure in
the list has these fields:

● “name”: The class name, as UTF-8 string.
● “id”: The class id, a 32-bit signed integer.

There are also helper global tables ​id_to_vehicle_class​ and ​name_to_vehicle_class​,
allowing a simple key-value lookup to vehicle classes by either their id or name.

Server Attribute List
The lists of all server attributes are stored in:

● Session attributes: ​lists.attributes.session
● Session member (player) attributes: ​lists.attributes.member
● Participant (car) attributes: ​lists.attributes.participant

Each of these lists contains structures with these fields:

● “name”: The attribute’s name.
● “type”: The type, one of “int8”, “int16”, “int32” or “string”.
● “access”: Access rights to the attribute. “ReadOnly” attributes can be only read, while

“ReadWrite” can be also modified. The ServerControlsSetup attribute is “ReadWrite” but
it can be modified only by the server itself.

● “description”: A short description.

You can use these helper global tables to look up individual attributes by their names:
name_to_session_attribute​, ​name_to_member_attribute​,
name_to_participant_attribute​. See ​Session Status and Attributes​ for more information
about the attribute structures.

Events List
While server attributes store the current status and setup, events describe changes in the
server’s or session’s state. A Lua addon can monitor events by utilizing ​Addon Callbacks​,
events are also stored in a server log which can be read later by Lua builtin functions (see
GetEventLogInfo​ and ​GetEventLogRange​).

The list of all event types is stored in ​lists.events​. Each structure in the list contains these
fields:

● “name”: The event’s name
● “type”: The type, one of “Session”, “Player” or “Participant”.
● “description”: A short description.
● “attributes”: List of attributes associated with the event. Each element of the list is a

structure describing the attribute, with “name”, “type” and “description”. Unlike
session/member/participant attributes, there is no “access” field - all events are
read-only.

Enums Lists
Several attributes have “enum” type. The attribute values are integers, and their enum type can
be used to translate the integer to a more user-friendly name. So for example, the attribute
WeatherSlot1 might have value 3360755426, which translates to “Clear”.

There are multiple enum types, each having its own list as well as two global helper tables - one
converting enum value to name, and one converting enum name to value. The following table
summarizes all enum lists:

List Name->Value Value->Name

lists.enums.damage Damage.NAME value_to_damage.N

lists.enums.tire_wear TireWear.NAME value_to_tire_wear.N

lists.enums.fuel_usage FuelUsage.NAME value_to_fuel_usage.N

lists.enums.penalties Penalties.NAME value_to_penalties.N

lists.enums.allowed_view AllowedView.NAME value_to_allowed_view.N

lists.enums.weather Weather.NAME value_to_weather.N

lists.enums.game_mode GameMode.Name value_to_game_mode.N

The lists themselves contain two fields: “name” and “value”. So for example the list
lists.enums.weather.list​ contains array of all weather enum names and values,
Weather.CLEAR​ evaluates to 3360755426, and ​value_to_weather[3360755426]​ evaluates to
“CLEAR”.

Flags Lists
Similar to “enum” attribute types there are also “flags” types. Flags also associate names to
values, but the attribute value itself can combine several flag values together using binary “or”
(or to be less precise, adding them together).

There are multiple flags types, with lists and tables similar to the enums tables:

List Name->Value Value->Name

lists.flags.session SessionFlags.NAME value_to_session_flag.N

lists.flags.player PlayerFlags.NAME value_to_player_flag.N

For example you could combine several session flags like this:

local flags = SessionFlags.ABS_ALLOWED | SessionFlags.TCS_ALLOWED

Which yields the same result as
local flags = 0x20 | 0x80

Which in decimal notation is the same value as “32 | 128” or “160”.

Callback List
During various in-game and server-side events the server can call a “callback” function
registered by a Lua addon. This is documented more in ​Addon Callbacks​. Each callback type is
identified by an integral value, and the server provides mapping between these values and
names, very similar to the enum lists:

● “lists.callbacks”: The callbacks list itself. Each structure contains “name”, “value” and
“description”.

● “Callback”: Global table that maps callback name to value.
● “value_to_callback”: Reverse global table mapping callback value to name.

Tables with Server and Session Status
In addition to global static list tables the server also maintains global tables with the run-time
state of the server and the multiplayer session hosted on the server.

Similar to the lists tables, these tables should be only read and never written to, even if the
server does not protect them against writes yet.

The tables are:

Server Status
The global table “server” stores the server status. It contains these fields:

● “name”: The name of the server, as set in the server config.
● “max_player_count”: Maximum number of players on the server, again from the config.
● “password_protected”: Boolean set to true if and only if the server has a password set in

the config.
● “state”: Current state of the server. See below.
● “secure”: Is the server configured as secure? This enables the usual Steam’s user

authorization checks for any joining players.
● “connected_to_steam”: Is the server currently connected to Steam?
● “server_id”: The server’s 64-bit id as assigned by Steam.

The valid values of the “state” field are:

● “Idle”: The server is not running yet. You will most likely never see this value in Lua.
● “Starting”: The server is starting but not everything has been initialized yet. When Lua

addons are already running this most likely means that the server has not connected to
Steam yet.

● “Running”: The server is up and running but not hosting any session.
● “RunningActive”: The server is running and hosting a multiplayer session.

Session Status and Attributes
The global table “session” stores all information about the multiplayer session hosted on the
server. Most of its content make sense only while there is an active session running on the
server, i.e. only when ​server.state == “RunningActive”​. The most important exception to
this is the ​session.next_attributes​ table which (if no session is active) contains the setup of
the next session to be created on the server. The session table contains these fields:

● “manager_state”: The state of the session manager. Be aware that this is not the same
thing as the session’s gameplay state, stored in session attribute “SessionState”.

● “name”: The name assigned to this session.
● “lobbyid”: Steam’s 64-bit id assigned to the lobby used by the session. Note that in the

future we might remove this field, as we plan to change the server to no longer rely on
Steam lobbies, which should improve networking stability when the server itself is
running fine but Steam servers have problems.

● “joinable”: Is the session hosted on the server currently joinable? The game itself
decides the value, you can’t modify this from the server. Sessions are joinable in the
lobby, and also during practice/qualification sessions as long enough time is left until the
end of the session.

● “max_member_count”: Maximum number of players that can join the session. Can be
lower than the number configured for the server if the session is set up that way, but
never can be higher.

● “attributes”: The session attributes, see below for more information.
● “next_attributes”: Attributes that will be applied “next”, which is either when the current

race finishes and everyone loads back into the lobby, or if the session completely ends,
when the next session is created on this server. This field is accessible even when there
is no session running on the server.

● “members”: Table with all session members (players), identified by their “refid”. See
below for more information.

● “participants”: Table with all participants (vehicles), identified by their participant id. See
below for more information.

The valid values of the “manager_state” field are:

● “Idle”: No session is running on the server.
● “Allocating”: First member is joining the server. The server is busy and no longer

available to new sessions, but it’s not available yet for join until the first member is fully
authenticated and joined.

● “Running”: The server is hosting an active session.

Session Attributes
All attributes of the current multiplayer session are stored in ​session.attributes​. Separate
document Dedicated Server Values and Types lists all available session attributes. The list is
also available via the HTTP API at the /api/list/attributes/session endpoint, and in Lua global
tables ​lists.attributes.session​ and ​name_to_session_attributes​, as documented in
Server Attribute List​.

While the current version of the server does not prevent modification of this table, it should be
used as read-only. Modifying contents of the table ​will not​ modify the game’s setup, it will just
confuse other addons. In the future the table will most likely become write-protected.

Any changes to the attributes table will be also notified to the game via the
SessionAttributesChanged​ callback, see ​Addon Callbacks​ for more info.

In addition to current session attributes, there is another table at ​session.next_attributes​.
This stores attributes that will be applied to the “next session”:

● When the current race finishes and everyone loads back to the lobby, next attributes will
be applied to the session.

● When everyone leaves the server, next attributes will be applied and show in the
in-game browser, and new session created on the server will use those attributes.

This table is also read-only, you need to request changes to attributes via builtin functions
documented in ​Server Lua Library​: ​SetSessionAttributes​, ​SetNextSessionAttributes​,
SetSessionAndNextAttributes​. Changing the attributes directly has undefined behavior, and will
be forbidden in the future.

Unlike ​session.attributes​, the table ​session.next_attributes​ is available even when
there is no session running on the server, and can be used to reconfigure the attributes for the
next lobby that will be created on the server. Addons that rotate settings will therefore most
likely request changes to “next attributes”, rather than modifying the attributes of current
session, which works only while players are waiting in the lobby. On the other hand for example
an addon that listens to player’s chat, and handles commands to modify or vote to modify
certain settings will want to modify the active setup - and also probably the “next” setup as well,
so the changes are remembered for the next session.

Session Members
The ​session.members​ table contains all members (players) joined in the session. Each
member is identified by their “refid”, which is a unique 16-bit integer assigned to each new
joining member. If a player leaves the session and then rejoins later, they will be assigned a
new refid. If you want to treat a player rejoining the session multiple times as a single entity, use
their Steam ID instead.

The table maps member refids to structures with these fields:

● “index”: The member’s index. This index is zero-based, so the values will be between 0
and the session size - 1. The game’s lobby UI displays players ordered by this index.

● “refid”: The refid again.
● “steamid”: The player’s Steam ID, a 64-bit integer.
● “state”: The player’s state. Can be one of “Idle”, “Authenticating”, “Connected” or

“Disconnected”. Disconnected session members will be removed from the session rather
quickly, so you will usually not see their state as such.

● “name”: Steam profile name of the player.
● “jointime”: Time when the player joined, UTC Unix time in seconds.
● “host”: Is the player the session’s host? This is a true boolean value (unlike boolean-like

attributes which are 0/1 integers).
● “attributes”: The member’s attributes.

Similar to session attributes, member attributes are documented in Dedicated Server Values
and Types, and the list is available via HTTP API at /api/list/attributes/member, and in Lua
global list tables ​lists.attributes.member​ and ​name_to_member_attribute​. The attributes
are read-only, and so is each member table.

Changes to members are notified by these callbacks: ​MemberJoined​, ​MemberStateChanged​,
MemberAttributesChanged​, ​HostMigrated​, ​MemberLeft​.

Session Participants
Session participants sub-table works similar to members, and it lists the vehicles in the game.
It’s available at ​session.participants​. Participants are identified by 32-bit integers assigned
by the game. The table maps these ids to structures with these fields:

● “id”: The participant’s id again
● “attributes”: The participant attributes

Again the participant attribute list is available in the usual places - in document Dedicated
Server Values and Types, via HTTP API at /api/list/attributes/participant, and in Lua global list
tables ​lists.attributes.participant​ and ​name_to_participants_attribute​. The
attributes are read-only, and so is each participant table.

Participants are created by the game, and won’t be available until it starts loading into a race.
When a race is finished, all participants are destroyed by the game - participants do not persist
between consecutive races. Even if the players all return back to the lobby and then start
another race (without restarting the session), brand new participants with unique ids will be
created for them.

Usually there is one participant for each player and each participant corresponds to an in-game
vehicle. But in the future there might be either participant-less players or vehicle-less
participants if dedicated spectator slots are implemented.

Two participant attributes are important in mapping participants to session members:

● “RefId”: This is the refid of the member that “owns” the participant.
● “IsPlayer”: This is a 0/1 integral boolean. For each refid only one participant associated

with that refid will be tagged with IsPlayer equal to 1, and this is that player’s participant
car. Participants with IsPlayer equal to 0 are AI vehicles that are assigned to that
member for game simulation purposes.

These callbacks are associated with participants: ​ParticipantCreated​,
PariticipantAttributesChanged​, ​ParticipantRemoved​.

Server Lua Library
The sections above documented global Lua tables maintained by the server - static lists and
dynamic attributes. All those tables are read-only and are used only to communicate the state
from the server to Lua.

The API of course also implements several functions that let you communicate “from Lua to
server”. These functions can be split into two sets - extensions of the basic Lua libraries, not
related to the server’s functionality, and the Lua API itself - server “builtins”.

Sandboxing
The server does not use any kind of sandboxing when running Lua addons, and has all
standard Lua libraries enabled. These functions are documented in ​Lua 5.3 - Standard
Libraries​. While the server allows the addons to call any standard Lua functions, including those
in “io” and “os” packages, we might decide to restrict some of that functionality in the future. In
general it’s recommended to follow these rules and your addon should be ok even after future
updates:

● “dofile”, “load”, “loadfile”: Do not use this, instead just list your addon files and any
dependency addons in the metafile

● ”print”: Feel free to use this for debugging purposes, the sms addons already print quite
a lot. In the future we plan to implement proper logging builtins instead, using the
server’s logging subsystems.

● Coroutine Manipulation: The way the server calls registered Lua callbacks is most likely
not compatible with Lua coroutines, do not try to yield from a callback function.

● Modules: Use addon file list and dependencies to load other Lua addons. There is a high
chance that we might not allow loading any C libraries from Lua, unless some public
addons make a very good use of this feature, or at least require the server’s user to
explicitly allow this for select addons, to prevent potential security issues.

● I/O library: We might modify its functionality to allow opening files only in the
<lua_output>/<addon_name>​ directory.

● OS library: Do not use ​os.exit​, ​os.execute​, ​os.remove​, ​os.rename​, ​os.setlocale​ -
those will most likely be disabled.

Lua Library Extensions
The “sms_base” addon extends the base Lua libraries with several helper functions:

dump(table [, indent])
Prints content of given table using the standard ​print​ Lua function, recursively. Indent is a
string prepended to each row, and it will be automatically extended by two spaces for each
sub-table.

dump_typed(table [, indent])
Similar to ​dump​ but also prints the types of all keys and values. This is useful when debugging
issues with tables that contain mixed keys - in Lua string key “123” is different from integer key
123, and you can run into this problem when working with tables persisted in JSON files. See
Data Type Conversions - JSON​ and ​table.deep_copy_normalized​.

string:split(pattern [, results])
Split string into substrings at “pattern”, create an array of the substrings and return it. The
pattern is just an ordinary string, the function does not support splitting by regular expressions. If

http://www.lua.org/manual/5.3/manual.html#6
http://www.lua.org/manual/5.3/manual.html#6

the optional table “results” is passed to the function, the function will append the substrings into
this table rather than creating a new table.

Example:

local s = “foo,bar,baz”

s:split(“,”)

returns array ​{ “foo”, “bar”, “baz” }

table.shallow_copy(other_table)
Creates a shallow copy of given table and returns it. Shallow copy means that the function just
creates a new table and copies the keys and values from the ​other_table​ as is, so if the other
table contains any sub-tables, those sub-tables will be also referenced from the new table.

table.deep_copy(other_table)
Creates a deep copy of given table and returns it. Unlike shadow copy, deep copying a table will
recursively deep copy all sub-tables, therefore creating a completely “independent” clone of any
complex nested table structures.

In addition to that, this function also assigns metatable to the new table, equal to the metatable
of the ​other_table​ (the metatable itself will not be a clone).

table.deep_copy_normalized(other_table [, intkey_table_names [, this_table_name]])
This a special extension of the ​deep_copy​ function. The base functionality is the same, but it
can also transform keys in some tables. When this function creates a clone of table which has
name that’s included in ​intkey_table_names​, the cloning of such table will automatically
convert all keys of the table to numbers, using Lua’s ​tonumber.

The ​intkey_table_names​ should be a “set” table - the keys should be table names, and values
set to true. You call ​table.list_to_set​ to create such “set” table from a simple “list of names” table
(array). The names will be used to determine which tables should be transformed to numeric
keys. I.e. the cloning logic is “​if intkey_table_names[table_name] then ​convert keys of
the table to numbers”. “Table name” is defined as:

● The name of the table passed to this function is specified in ​this_table_name
● The name of a nested table is the key at which the table is stored

This is a very specialized function that will be mostly useful only at addon “startup” code to
normalize persistent data saved by the addon previously. Because the JSON storage supports
only string keys, any tables with integral keys that are persisted by ​SavePersistentData​ will have
their keys converted to strings when the server loads the data on startup. This is documented in
Data Type Conversions - JSON​.

Note that this function can be used to fix only integer-string key type mismatches. It’s
recommended to use tables with only string and integer keys in persistent data, you will have to
convert any other data types manually in your addon code.

Example: The “sms_rotate” maintains server statistics and stores them in persistent tables.
Some of those tables use integral keys - the per-user tables (keys are player Steam IDs),
per-track tables (keys are track ids) and so on. Simplified, its code does something like this on
startup:

local addon_storage = …

local addon_data = addon_storage.data

local table_names = { players = true, tracks = true }

addon_data = table.deep_copy_normalized(addon_data, table_names)

addon_storage.data = addon_data

This fixes the key types after load, and then the addon uses ​addon_data​ directly.

table.list_to_set(list)
Coverts array-style table to set-style table. An array table is a table with keys being indices from
1 to N, and any values. The corresponding set will have those values as keys, all mapped to
“true” value. This representation greatly simplifies queries of type “does table contain X”. While
for arrays you have to search through all elements, for sets you can simply call
“​if set[x] then … end​”.

table.add(table, key, delta)
If given table contains the ​key​, adds ​delta​ to its value. Otherwise creates new value at the ​key
with value set to ​delta​. Or in other words, same as ​table[key] = table[key] + value​,
but behaves nicely even if no such key is in the table and works as if the value was zero then.

table.subtract(table, key, delta)
Same as ​table.add​ but subtracts the value instead.

Server Builtins
Server builtins are the core of the API - the Lua functions defined by the server which let the
addon code communicate with the server. The server defines these builtin functions:

GetBuildVersion()
Returns the server built version, as a single integer. This number is increased with each public
release by at least one.

GetProtocolVersion()
Return the game-server protocol version. This version matches the in-game number and usually
increases when a new major patch is released.

GetApiVersion()
Returns the API version of the server. The addon should use the metafile to specify with which
API versions it’s compatible (see ​Addon Metafile​). It can use this function to query the exact
version. The version will be returned as a table-array with two fields - the major and minor
version numbers.

GetAddonVersion()
Returns the addon version as specified in the addon metafile. The version will be returned as a
table-array with two fields - the major and minor version numbers.

RegisterCallback(function)
Registers function that should be called as the addon callback. Each addon can have only one
callback function registered, its arguments can be used to determine the type of the callback
and the callback-specific arguments. See ​Addon Callbacks​ for more information about
callbacks.

UnregisterCallback()
Unregisters the function previously registered by ​RegisterCallback​.

EnableCallback(callback_id)
Enables callbacks with given id. A callback function must be registered by ​RegisterCallback​, this
function then tells the server which callbacks should be actually delivered to this addon. Initially
all callbacks are disabled.

DisableCallback(callback_id)
Disables callback previously enabled by ​EnableCallback​.

SavePersistentData()
Saves addon persistent data to JSON file stored in ​<lua_config>/<addon_name>_data.json​.
These data are initially passed to the addon via the … arguments, and can be accessed like
this:

local addon_storage = …

local addon_data = addon_storage.data

… use addon_data table in your code to store anything …
Then calling this function will save the contents of the ​addon_data​ table. Be aware that in JSON
“tables” can have only string keys. It’s recommended to use only strings as keys in the
persistent addon table and its subtables, or alternatively integers and then fixup the data at
addon startup (see ​table.deep_copy_normalized​).

GetUtcUnixTime()
Retrieves server “Unix time” - system time in seconds since the “epoch”, which is defined as 1
January 1970, 00:00:00 UTC. This time is synchronized to Steam servers and does not rely on
the system time of the server on which the dedicated server is running.

Be aware that in the future we might support running the server in “offline” mode where it would
not require stable Steam connection, then this value might be rather unreliable. Use this
function to get something resembling “current date and time”. For more detailed timings in the
addon, use the monotonic timer provided by ​GetServerUptimeMs()​.

GetServerUptimeMs()
Returns current server time in milliseconds. This is a monotonic timer, i.e. it will always tick up,
even if the local OS time jumps backwards. The initial value when the server starts is undefined,
do not assume it starts at zero. It has 64-bit precision, so there should be no issues with
potential overflow.

SendChatToAll(message)
Sends chat text to all members of the session. The chat message will be displayed as is.

SendChatToMember(refid, message)
Sends chat text to single member of the session, identified by their refid.

KickMember(refid [, ban_seconds])
Removes session member from the session. The member is identified by their refid. Optionally
this function can also apply a temporary ban if ​ban_seconds​ is specified. This ban does not
persist through server restarts.

Only players who are members of the current session can be kicked and temp-banned by this
call, it can’t be used to ban players “in advance”. In the future we might add runtime access to
server blacklists and whitelists to provide more persistent banning options..

StopSession()
Removes everyone from the current session, which effectively destroys the session and makes
the server available for a new session.

SetSessionAttributes(attributes)
Requests session attribute change from the game. This call changes the attributes of the
current session, and can be used only while the session is active and in lobby. Only writable
attributes can be modified by this call.

The server needs to communicate with the game to apply the changes, so they won’t be
reflected in ​session.attributes​ immediately. Some of the changes might be rejected by the
game, such as requesting a non-existing track id - but do not rely on “nonsense” attributes to be
always correctly handled by the game. Also even if the game is in the lobby state it might
transition to loading before the server communicates the change request, in which case the
request will be ignored by the game.

See ​Session Attributes​ for more information about the attributes this call can modify. The
“sms_base” addon overrides this builtin to apply “session attribute normalization” - it
automatically converts string values to numeric identifiers where possible before passing the
request to the server. Therefore attributes such as track id, various enums or flags can be set
using the track/enum/flag names instead of the numeric values. See ​Extended Session
Attributes​ for more information.

There is no way to modify individual attributes of session members or participants.

SetNextSessionAttributes(attributes)
Requests change of “next session attributes”. Unlike ​SetSessionAttributes​, this call does not
communicate with the game and the changes are applied instantly to the global table
session.next_attributes​. These attributes are then automatically applied to the game when:

● A new session is created on the server
● Current race ends and everyone loads back to lobby

This call also changes the information displayed about the server in the game browser. The
“sms_base” addon overrides this builtin to support the automatic session attribute normalization
(see ​Extended Session Attributes​).

SetSessionAndNextAttributes(attributes)
This call combines ​SetSessionAttributes​ and ​SetNextSessionAttributes​. If you want to modify
the current lobby attributes, and also have them apply to any lobbies that will follow, use
SetSessionAndNextAttributes. Just SetSessionAttributes alone modifies only the the current
lobby, and the next lobby is then overwritten with “next attributes” unless those are updated as
well.

This call will succeed even when the game is not in a lobby state or when there is no session
hosted on the server at all. Then it will behave exactly the same way as
SetNextSessionAttributes.

GetEventLogInfo()
Returns information about the event log.

Whenever the server generates an event, it notifies all addons that enabled the ​EventLogged
callback. The server also remembers the event in its internal log, and this function returns a
table with basic information about the log. The table contains these fields:

● “first”: The index of the oldest event in the log. Once the server’s log gets full it starts
discarding old events, and this number will start increasing. The log size can be changed
by the server configuration option “eventsLogSize”.

● “count”: The number of events stored in the log.

GetEventLogRange(offset [, count])
Returns log entries from the event log. The ​offset​ argument specifies the index of the first
event to retrieve. It can be also negative, in which case it’s relative to the log’s end. The ​count
argument specifies how many events should be retrieved. If it’s not set, all events until the end
of the log will be retrieved.

Example 1: Retrieve 10 latest events:

local events = GetEventLogRange(-10, 10)

Example 2: Retrieve all available log events:

local log_info = GetEventLogInfo()

local events = GetEventLogRange(log_info.first)

The call returns a table with three fields. Fields “first” and “count” contain the same information
as what GetEventLogInfo returns. Field “events” contains the returned events, it’s an array table
with these structure:

● “index”: Index of the event.
● “time”: Unix time in seconds when the event was generated.
● “type”: Even type, one of “Session”, “Player” or “Participant”.
● “name”: The event’s name.
● “refid”: If this is a “Player” or “Participant” event, the refid of the player associated with

the event.
● “participantid”: If this is a “Participant” event, the id of the participant associated with the

event.
● “attributes”: Table with event attribute values.

Please refer to event lists for information about the individual event types and their attributes.
Some basic information is available in ​Events List​, the full list is available in a separate
document Dedicated Server Values and Types, via HTTP API at /api/list/events and in Lua
global tables ​lists.events​.

Attribute Normalization and Stringification
Server attributes use numeric values to represent various identifiers, enums and flags. The
“sms_base” addon implements several helper functions that can be used to convert these

numeric values to the corresponding name strings (stringification) and from strings to values
(normalization). This is documented in ​Extended Session Attributes​. The addon also overrides
the builtins used to manipulate session attributes to automatically apply attribute normalization.

While you can use the lists tables to do these conversion manually, the helper functions simplify
this task.

Normalization
To convert session attributes with string values of ids, enums and flags to attributes with
numeric values, simply call

normalize_session_attributes(attributes)

Be aware that this normalizes the attributes in-place, if you want to preserve the original table
use ​table.deep_copy​ first.

The “sms_base” addon also exposes these functions that are used by
normalize_session_attributes​ internally:

● normalize_session_attribute(key, value)

Returns normalized session attribute value, given the attribute name as ​key​.
● normalize_track(value)

normalize_vehicle(value)

normalize_vehicle_class(value)

Converts track, vehicle or class name to id, if possible.
● normalize_session_enum(name_to_value, value)

Converts the string-form value to numeric value using the ​name_to_value​ table. For
example to normalize a weather value, you would use:

normalize_session_enum(Weather, “Clear”)

Even though the function is called normalize “session” enum, it can be used on player
and participant enums as well if the appropriate ​name_to_value​ table is supplied.

● normalize_session_flags(name_to_value, value)

Similar to the enum normalization function, but supports comma-separated list of
multiple flags, and will convert each of them individually then OR them together:

normalize_session_flags(SessionFlags, “ABS_ALLOWED,SC_ALLOWED”)

All of the functions above accept either stringified values, and then they will attempt to convert
them to corresponding numbers, but also already numeric values and then they will just return
them as is. The flags conversion supports any combination of string-form and numeric flags.
The functions return the normalized value.

Stringification
To convert session attributes table to a table with stringified values, call

stringify_session_attributes(attributes)

This conversion will modify the attributes in-place. It still returns the table reference for easier
call chaining, but the return value is always the same as the attributes argument. So never call it
on ​session.attributes​ directly, that structure is read-only! Instead for example to print the
current attributes when debugging you addon, use:

local attrs = table.deep_copy(session.attributes)

dump(stringify_session_attributes(attrs))

The “sms_base” addon also implements the following conversion functions, all of them are
counterparts of the helper functions described in ​Normalization​:

● stringify_session_attribute(key, value)

● stringify_track(value)

● stringify_vehicle(value)

● stringify_vehicle_class(value)

● stringify_session_enum(value_to_name, value)

● stringify_session_flags(value_to_name, value)

Track and Vehicle Names
Two simple helper functions ​get_track_name_by_id(track_id)​ and
get_vehicle_name_by_id(vehicle_id)​ are closely related to the attribute stringification.
They are helpful mostly in debugging prints and are almost equivalent to

id_to_track[track_id].name

id_to_vehicle[vehicle_id].name

with the improvement that they do not crash if the id is not a valid one, they return a “unknown id
123”-style string instead.

Addon Callbacks
The server generates notifications which are delivered to Lua addons via callbacks.

Each addon can register a callback function by calling builtin ​RegisterCallback​. Then the addon
should tell the server in which types of notifications it is interested by calling ​EnableCallback​.
The server will then call the registered callback function whenever it generates notification of
type matching any of the enabled callback types.

The addon callback function is called with one or more arguments. The first argument is always
the callback id, same as the argument previously passed to ​EnableCallback​. Any additional
arguments depend on the callback types.

Example: Handle callbacks generated when an event is logged, and process “PlayerJoined”
events:

local function handle_player_event(event)

local refid = event.refid

local player = session.members[refid]

if event.name == “PlayerJoined” and player then

print(“Player ” + player.name + “ joined”)

end

end

local function addon_callback(callback, …)

if callback == Callback.EventLogged then

local event = …

if event.type == “Player” then

handle_player_event(event)

end

end

end

RegisterCallback(addon_callback)

EnableCallback(Callback.EventLogged)

The supported callback types are:

Tick
Called whenever the server runs its internal tick. This happens less often when the server is idle
and is waiting for someone to create a multiplayer session, and the server ticks more often while
hosting a session.

This callback type has no arguments.

ServerStateChanged
Called whenever the server’s state changes.

This callback type has two arguments:

● Previous server state.
● New server state.

The current server state is always available in ​server.state​, see ​Server Status​ for the list of
possible state values. When the notification is delivered the ​server.state​ value will contain the
new state.

SessionManagerStateChanged
Called whenever the session manager’s state changes.

This callback type has two arguments:
● Previous session manager state.
● New session manager state.

The current session manager state is always available in ​session.manager_state​, see
Session Status and Attributes​ for the list of possible state values. When the notification is
delivered the ​session.manager_state​ value will contain the new state.

Note that this state is different from the gameplay-related session state attribute available in
session.attributes.SessionState​. Changes to that attribute are notified via session event
“StateChanged”, and you can use the ​SessionAttributesChanged​ callback type to listen for
those changes, or alternatively the event notification ​EventLogged​ and then check if the event is
a “Session” event with name “StateChanged”.

SessionAttributesChanged
Called whenever the session’s attributes change. The only argument to this callback is an
array-style table with the list of attributes that have changed. You can read their new values
from ​session.attributes​.

NextSessionAttributesChanged
Called whenever the “next session” attributes change, also with a table argument containing the
names of the modified attributes.

MemberJoined
Called when a new session member joins the server. The argument is the member’s refid.

This notification is generated quite early in the join process, as soon as the server adds the
member into its lists. Not many details will be known about the member at this point, and the
game might even reject the player. If you are interested in the event that’s generated when a
player fully joins the game hosted on the server, use the ​EventLogged​ callback type instead and
listen for “Player” event with name “PlayerJoined”.

MemberStateChanged
Called when the state of a session member changes.

This callback type has three arguments:

● Refid of the session member.
● Previous member’s state.
● New member’s state.

MemberAttributesChanged
Called whenever session member’s attributes change.

This callback type has two arguments:

● Refid of the session member.
● Array-style table with the list of attributes that have changed. You can read the attributes

from ​session.members[refid].attributes

HostMigrated
Called whenever the host migrates to another session member. The only argument is the refid
of the new host.

MemberLeft
Called when a session member leaves the session. The only argument is the refid of the leaving
member.

ParticipantCreated
Called when a new participant is created by the game. The only argument is the participant’s id.

PariticipantAttributesChanged
Called when participant’s attributes change.

This callback has two arguments:

● Id of the participant.
● Array-style table with the list of attributes that have changed. You can read the attributes

from ​session.participants[participantid].attributes

ParticipantRemoved
Called when a participant is removed from the game. The only argument is the participant’s id.

EventLogged
Called when the server logs an event. The callback has one argument, the event itself, which is
a table with:

● “index”: Index of the event
● “time”: Unix time in seconds when the event was generated
● “type”: Even type, one of “Session”, “Player” or “Participant”.
● “name”: The event’s name.

● “refid”: If this is a “Player” or “Participant” event, the refid of the player associated with
the event

● “participantid”: If this is a “Participant” event, the id of the participant associated with the
event

● “attributes”: Table with event attribute values.

The individual events are listed in the Dedicated Server Values and Types document, via HTTP
API at /api/list/events and in Lua global tables ​lists.events​.

